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Liquid crystals have been studied in equilibrium for a long time. Another direction in
which a lot of research has gone into is making the individual components of the liquid crys-
tal active. An interesting thing which happens in nematics is the formation of topological
defects, on quenching from disordered to ordered state. A theory of the dynamics of topo-
logical defects in active nematics has not been established yet. This paper seeks to provide
equations governing the dynamics of active topolgical defects in nematics by viewing them
as a mixture of motile particles with interactions.

To do so, a hydrodynamic picture has been used in conjunction with a particle-level
picture. The hydrodynamic picture is that of the order parameter Q and the particle-level
picture is the Langevin equation of a single topological defect. The activity has been included
in the force balance equation −Γu+∇ · σa = 0, in the form of the active stress σa = αQ.

The dynamical equation for the order parameter can be written as:

∂tQ+ u · ∇Q− [Q,Ω] = L(Q,u) +
1

γ
[a2 − a4tr(Q

2)]Q+
K

γ
∇2Q (1)

L(Q,u) = λ1D+ λ2Q∇ · u− λ3Qtr(Q · ∇u) (2)

where 2Ωµν = ∇µuν −∇νuµ is the vorticity tensor and 2Dµν = ∇µuν −∇νuµ − δµν∇ · u is
the symmetrized and traceless strain rate tensor. Other terms come from the free energy
upto the first Frank approximation.

The Langevin equations for the ±1/2 defects are respectively:

ṙ+i = vei − µ∇iU +
√

2µTξi(t) (3)

ṙ−i = −µ∇iU +
√
2µTξi(t) (4)

(5)

where ei is the +1/2 defect, µ is the mobility, ξ is the Gaussian white noise, and U =
−2πK

∑
i ̸=j qiqj ln

∣∣ri−rj
a

∣∣ is the 2D Coulomb gas interaction potential between defects with
charges qi,j with a the size of the defect core. Here v is the nonvanishing flow at the centre
of the +1/2 defect which makes it propel.
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The fact the +1/2 defect has a deterministic velocity means that it runs away from the
-1/2 defect, which might lead to unbinding. It is the classic case of someone running away
from another.

Using the Q equation, the equation for the defect polarity dynamics of the +1/2 defect
ei = a∇ · Q(r+i ) has been obtained. Ignoring the noise and solving the equation for Q
perturbatively with the quasistatic approximation, the authors derive the dynamical equation
for the defect polarity:

ėi = − 5γ

8K
[vi · (vi − vei)]ei −

vγ

8K
(vi × ei)ϵ · ei (6)

It is also seen that the defect polarization tends to align with the force acting on the defect
due to activity. However, up to this point, the most important part of the dynamics have
not been considered - the noise which might play a role in the dynamics of the polarization
ei.

Including both the rotational diffusion and the longitudinal noise, the dynamics of ei is
shown to be governed by:

ėi =
5µγ

8K
[∇iU · (vei − µ∇iU)]ei +

vµγ

8K
(∇iU × ei)ϵ · ei −

√
2DRϵ · eiηi(t) + νi(t) (7)

Once the noise terms have been added, the case changes from that of just runners running
around to that of running (topological) drunkards!

The Fokker-Planck equation from the Langevin equations for r, the distance between
two defects and that for e, the polaritzation, can be written. From that Fokker-Planck
equation the steady state distribution at large distances have been obtained perturbatively
in the activity. The result was that the distribution was similar to that seen in equilibrium
ρss ∝ e−Ueff/T , with the effective pair potential Ueff ≃ (πKeff/2) ln(r/a), where

Keff(v) = K − v2

2µDR

(
1 + µγ

3T

4K

)
+O(v4) (8)

With this, the BKT transition temperature changes from T eq = πK/8 to Tc(v) = πKeff(v)/8.
And we get the phase boundary between disordered state and ordered nematic:

|vc(T )|
v∗

=

√
16T̃ (1− T̃ )

π[1 + (3π/32)µγT̃ ]
(9)

where T̃ = T/T eq
c and v = µT eq

c /lR.
The interpretation of all these results is that at low activity, the rotational diffusion

is enough to make the defect motion less persistent and hence unable to lead to defect
unbinding. However, as activity is increased, the persistent motion helps to unbind the
defects.

Consider the case of two (topological) drunkard friends who drink at the same bar but
at the moment they leave the bar, a stray dog starts to chase one of them. It is natural that
the one being chased starts to run but will he/she be able to get far away from the other
friend? Now consider the case that they are very drunk. Then the two of them will not
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be able to run far away but will keep moving in random directions. It is very possible that
one of them gets bitten by the dog and the other friend eventually has to help the other.
This is the case of binding of defect pairs. However, if the one running is somehow less
drunk and can run very fast, then he/she will eventually outrun the dog, leaving behind the
other drunkard alone. This is the case of unbinding of defects. Which of the two happens
will depend on two factors: how fast the drunkard can run (activity, v), and how drunk the
drunkard is (temperature, T ). This is exactly what Suraj Shankar et al. have derived with
rigorous mathematics for the topological defects in active nematics. A nonequilibrium phase
transition can thus be observed from an ordered nematic phase to a phase of unbound defects
by increasing the activity above a certain threshold.

In my opinion, the paper does an excellent job in working out some key results to further
our understanding of topological defects in active nematics. There are still some points that
the authors have left out. One pertinent question still remains: what about many defect
features of the problem such as screening effects which might play a role in the dynamics of
these defects? Could we also develop a coarse-grained hydrodynamic theory of defects by
considering a fluid of these defects?
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