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Lecture 9: Some Analytical Calculations
29th May, 2023

Lecturer: Prof. Diptiman Sen Scribe: Phanindra Dewan

In this lecture, some analystical calculations were done to show the correspondence/mapping
in 1-D between spin-1/2 systems and fermions < bosons.

1 Spin Chain
At site n,

§n = (Eaﬁ,gaffb,gafb) (1)
At any site, the anticommutator and commutator relations are:

{or, 0} =0

n’-n

[or, 0¥ = i2ho?,

[Sy, Si] = kS,

At different sites,

(S, 58] = OnmihsSy
At different sites, the operators commute, and is boson-like. At a particular site, the operators are
fermion-like.

Recall:
Bosonic operators: by, bl

[5, 0] =0
(0], bf,] =0

Fermionic operators: ¢, CIL



Let’s look at the Hamiltonian:

H= ‘]Z (SpSnr1 + S8 Sn + S55541) 2)

(J > 0) — isotropic anti-ferromagnetic chain

Think of H = J Y, Sy - 541
Minimum energy configuration is : 1| 7| 1] ; called Neel configuration, with no net magnetization.
Consider H = —J Y 5, - §p41
Minimum energy configuration is : []1]17; called isotropic ferromagnetic chain, with net magneti-
zation.
There are different magnetic materials depending upon the orientations of the spins and teh relative
strength of magnetic moments of the spins:

* Ferromagnetic

* Antiferromagnetic
* Ferrimagnetic

* Paramagnetic

Consider again:

H=—=J) 5 8ne1

n
L

— 7 Z [S7S7i + 5 S+S w1+ S Sl

Try the ansatz: o)) = [1T11)
Then, H [¢)) = —J 4= |4)
This is the ground state of the system, It is not unique. — L + 1 degenerate ground states.

But now consider,

L
= T D083+ (] St + S i)

n=1

Try the Neel state: |[¢)) = |1]1])
Then, H [¢)) = —J LTEQ |4)) + other states
Just finding the ground state is a hard problem. — Solved by Hans Bethe (1931 - Bethe ansatz)

We will try to solve the case for which there is no z-z coupling.



2 X-Y Model

L
H =1 (SiSia+ SiSia) 3
n=1

Note that here the sign of .J is not important as we can flip the sign by a unitary transformation.
Keep in mind that the following state: —«—«—<«——<«—« is not an eigenstate. TO find the
ground state, we will need to something called the Jordan-Wigner transformation.

2.1 Jordan-Wigner Transformation

From spin-1/2 system, we need to go to spinless fermions. The fermionic operators will be as
described before.

Mapping:

Sz clen
Lo, o b, 1

The mapping between the operators is:

S = h(chen +1/2) “)

S = 8% 4iSY

= —(o® +i0Y
2(0 ig¥)

01
=h
Now the question is do the S and S, map directly to the ¢! and ¢, operators.
St < kel
_ 2
S, = hep
The operators S and S, satisfy commutation relations at different n. The operators ¢/, and ¢,
satisfy anticommutation relations.

We know:
. (1 0
om={_ _
And,
z _x T _z
0,0, = —0,0,
z Yy Yy 2
0,0p = 0n0n



Taking A = 1, we can take the fermionic operators to be a string of o operators.

n—1
ol =5t o’ )
j=—00
n—1
Cn =295, o; (6)
j=—0
Doing so, we can have c,, and ¢, satisfy teh correct antimmutation relations.
—But why is {¢,, ¢} = 0?
Form =n,c2 =0
9 \2 . _ 00
— ¢, =(5,)? =0,since S, = 10
Next, ¢,,¢,y, = —CmCpn if 1 # m
The 0%’s for j = —c0 to m — 1 cancel since (0‘;)2 =1
= Cp = 0,00 1O 1Sy,
Cm = O,
" o7, anticommutes with S, = ¢, and ¢, anticommute if m # n
— ¢l anticommutes with ¢/ by just taking Hermitian conjugate.
Next up: {cp, ¢} = 6n
Form = n: {c,,cl} =1
So, ¢l + cle, = S, S+ S;FS, = 1 since,
_ 0 0 n 0 1
The m # n case follows as before.
Now we can inverse the relation and write:
n—1
St =cl o’ (7)
j=—0
n—1
S, =c¢y o; )
j=—00
and,
of =2(chen — 1/2) )



Then,

L
H =] ) (8780 + SiSii)
n=1

J
5 28180+ 8080

n

Using the same logic as before, we get:

Sy = ap
Syl = 051t
Then, we can write: ;
H = 5;[@1 Cpt1 + hec]
Consider the foloowing:
Saon, =0
Suon |y ==,
And claiming that: Sfo? = —ST,
co? = —cf

J
WH =3 ;(CLC"H + chircn)

(10)

(11

(12)
13)

(14)

15)
(16)

This completes the Jordan-Wigner transformation. The X-Y model has been converted into a tight-

binding Hamiltonian of spinless fermions.

Note: This trick will only work for 10D because in 2-D, it will be difficult to come up with the

string of o’s when defining S; in terms of ¢].
Now to solve for the energies, we will go to Fourier space:

= \%Zn:cneikn
Cp = %che;k

Then, the Hamiltonian becomes,

17

(18)

(19)

(20)

21



where,
E, = —Jcos(k) (22)

Particles can be added to the bands by adding a chemical potential in the Hamiltonian.

J

H = §Z(CT Cna1 + ancn ,uz Tcn (23)

n

— H-= JZ (STS7,, + SUSY.,) NZ (SZ ) (24)

Here, the chemical potential ;4 acts like a magnetic field in the z direction.

3 Correlation Functions

3.1 Two-point Correlation Functions

Let us calculate the following quantity:

(GS|S:S: |GS) = (GS] ( ! cn + 1/2)( m+ 1/2) |GS) (25)
With no cross terms:

(GS|cle, |GS) = Z (GS|c} ey |GSy 1=k (26)

k1 ko
| L2

<To get non-zero terms: — 5 <ki=ky< ) Z = 27

— (GS|cl,cn|GS) = (28)

Then cross terms:

(GS|clenel e |GS) = L

2

Y, {GS|c},crycl,cr, |GS) e Thimtenmhamm) 9

k1,k2,ks3,kq

cr, |GS) —annihilates ky if -7 < ky < 7
CLSCM |GS) —annihilates ky if —7% < kg4 < 7 and either creates that particle back (k3 = ky) or

creates a new particle (k3 # ky) if § < k3 < 37”



Wick Contraction:

ks = ky
ki = ky
. (£)2_1
2 4
ks # ky
k1 # ko
k1 = ky
ko = k3

(GS] czlc@clgcm |GS) = (GS| c/rwczsczlck4 |GS)

Phases: ei(—kinthimtkan—kym)

™2 dk
> =%

—m/2<ki<m/2 -m/2 L
e 1 (™ dky (% dky i i
- (GS| 5257 |GS) = ﬁf EJ s it
-2 L Jr/2 L
— JW/Q %e—ikl(n—m) J37r/2 %e—ikg(n—m)
—7/2 27 /2 o2

— 1 ]' ’ikl(nfm) 71'/2 1 ikz(nfm)
I <—z'<n oy e ) G

1 —iT (n—m iT(n—m i3 (e T (e
:m(—(e 2 ( ) _ einl ))><€2( ) eial ))
1 .
— m(—%) sin <g(n — m)> e (=) (24) sin <g(n — m))
1 m

= o (G ) e

= 0,if m —n = even
1

:_ﬁ,lfm—TL:Odd
™ n—-m

In conclusion,

)

(30)

€1y

(32)

(33)

(34)

(35)

(36)
(37)
(38)



* gapless system :

* gapped system:

3.2 A "cute' result

Y (GS| 385, GS) = (GS| 82 ) S5 |GS) (39)
Here, Y, Sz =5 (cl.c,n —1/2) =3 ¢l e — L/2 Then,
: g T
;<GS|SHSW|GS> i (12 ottt ) (40)
=0 (41)



