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Lecturer: Prof. Diptiman Sen Scribe: Phanindra Dewan

In this lecture, some analystical calculations were done to show the correspondence/mapping
in 1-D between spin-1/2 systems and fermions Ø bosons.

1 Spin Chain
At site n,

s⃗n “

ˆ

ℏ
2
σx
n,

ℏ
2
σy
n,

ℏ
2
σz
n

˙

(1)

At any site, the anticommutator and commutator relations are:

tσx
n, σ

y
nu “ 0

rσx
n, σ

y
ns “ i2ℏσz

n

rSx
n, S

y
ns “ iℏSz

n

At different sites,
rSx

n, S
y
ms “ δnmiℏSz

n

At different sites, the operators commute, and is boson-like. At a particular site, the operators are
fermion-like.
Recall:
Bosonic operators: bn, b:

n

rbn, b
:
ms “ δnm

rbn, bms “ 0

rb:
n, b

:
ms “ 0

Fermionic operators: cn, c:
n

tcn, c
:
mu “ δnm

tcn, cmu “ 0

tc:
n, c

:
mu “ 0
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Let’s look at the Hamiltonian:

H “ J
ÿ

n

pSx
nS

x
n`1 ` Sy

nS
y
n`1 ` Sz

nS
z
n`1q (2)

pJ ą 0q Ñ isotropic anti-ferromagnetic chain

Think of H “ J
ř

n s⃗n ¨ s⃗n`1

Minimum energy configuration is : ÖÖÖ; called Neel configuration, with no net magnetization.
Consider H “ ´J

ř

n s⃗n ¨ s⃗n`1

Minimum energy configuration is : ⇈⇈⇈; called isotropic ferromagnetic chain, with net magneti-
zation.
There are different magnetic materials depending upon the orientations of the spins and teh relative
strength of magnetic moments of the spins:

• Ferromagnetic

• Antiferromagnetic

• Ferrimagnetic

• Paramagnetic

Consider again:

H “ ´J
ÿ

n

s⃗n ¨ s⃗n`1

“ ´J
L

ÿ

n“1

rSz
nS

z
n`1 `

1

2
pS`

n S
´
n`1 ` S´

n S
`
n`1qs

Try the ansatz: |ψy “ |⇈⇈y

Then, H |ψy “ ´J Lℏ2
4

|ψy

This is the ground state of the system, It is not unique. Ñ L ` 1 degenerate ground states.

But now consider,

H ““ J
L

ÿ

n“1

rSz
nS

z
n`1 `

1

2
pS`

n S
´
n`1 ` S´

n S
`
n`1qs

Try the Neel state: |ψy “ |ÖÖy

Then, H |ψy “ ´J Lℏ2
4

|ψy ` other states
Just finding the ground state is a hard problem. Ñ Solved by Hans Bethe (1931 - Bethe ansatz)

We will try to solve the case for which there is no z-z coupling.
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2 X-Y Model

H “ J
L

ÿ

n“1

pSx
nS

x
n`1 ` Sy

nS
y
n`1q (3)

Note that here the sign of J is not important as we can flip the sign by a unitary transformation.
Keep in mind that the following state: ÑÐÑÐÑÐÑÐÑÐ is not an eigenstate. TO find the
ground state, we will need to something called the Jordan-Wigner transformation.

2.1 Jordan-Wigner Transformation
From spin-1/2 system, we need to go to spinless fermions. The fermionic operators will be as
described before.
Mapping:

Sz
n c:

ncn
ℏ
2

|Òyn Ø |1yn 1
´ℏ

2
|Óyn Ø |0yn 0

The mapping between the operators is:

Sz
n “ ℏpc:

ncn ` 1{2q (4)

S`
n “ Sx

n ` iSy
n

“
ℏ
2

pσx ` iσyq

“ ℏ
ˆ

0 1
0 0

˙

Now the question is do the S`
n and S´

n map directly to the c:
n and cn operators.

S`
n

?
“ ℏc:

n

S´
n

?
“ ℏcn

The operators S`
n and S´

n satisfy commutation relations at different n. The operators c:
n and cn

satisfy anticommutation relations.
We know:

σz
n “

ˆ

1 0
´ ´1

˙

And,
σz
nσ

x
n “ ´σx

nσ
z
n

σz
nσ

y
n “ ´σy

nσ
z
n
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Taking ℏ “ 1, we can take the fermionic operators to be a string of σ operators.

c:
n “ S`

n

n´1
ź

j“´8

σz
j (5)

cn “ S´
n

n´1
ź

j“´8

σz
j (6)

Doing so, we can have cm and cn satisfy teh correct antimmutation relations.
ÑBut why is tcm, cnu “ 0?
For m “ n, c2n “ 0

“ñ c2n “ pS´
n q2 “ 0, since S´

n “

ˆ

0 0
1 0

˙

Next, cncm “ ´cmcn if n ‰ m
The σz

j ’s for j “ ´8 to m ´ 1 cancel since pσz
j q2 “ 1

“ñ cn “ σz
mσ

z
m`1......σ

z
n´1S

´
n

cm “ S´
m

∵ σz
m anticommutes with S´

m “ñ cn and cm anticommute if m ‰ n
“ñ c:

n anticommutes with c:
m by just taking Hermitian conjugate.

Next up: tcn, c
:
mu “ δmn

For m “ n: tcn, c
:
nu “ 1

So, cnc:
n ` c:

ncn “ S´
n S

`
n ` S`

n S
´
b “ 1 since,

S´
n “

ˆ

0 0
1 0

˙

, S`
n “

ˆ

0 1
0 0

˙

The m ‰ n case follows as before.

Now we can inverse the relation and write:

S`
n “ c:

n

n´1
ź

j“´8

σz
j (7)

S´
n “ cn

n´1
ź

j“´8

σz
j (8)

and,
σz
j “ 2pc:

ncn ´ 1{2q (9)
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Then,

H “ J
L

ÿ

n“1

pSx
nS

x
n`1 ` Sy

nS
y
n`1q (10)

“
J

2

ÿ

n

pS`
n S

´
n`1 ` S´

n S
`
n`1q (11)

Using the same logic as before, we get:

S`
n » c:

n (12)
S´
n`1 » σz

n`1cn`1 (13)

Then, we can write:

H “
J

2

ÿ

n

rc:
nσ

z
ncn`1 ` h.c.s (14)

Consider the foloowing:

S`
n σ

z
n |Òyn “ 0

S`
n σ

z
n |Óyn “ ´ |Óyn

And claiming that: S`
n σ

z
n “ ´S`

n ,
c:
nσ

z
n “ ´c:

n (15)

∴ H “ ´
J

2

ÿ

n

pc:
ncn`1 ` c:

n`1cnq (16)

This completes the Jordan-Wigner transformation. The X-Y model has been converted into a tight-
binding Hamiltonian of spinless fermions.
Note: This trick will only work for 10D because in 2-D, it will be difficult to come up with the
string of σ’s when defining S`

n in terms of c:
n.

Now to solve for the energies, we will go to Fourier space:

ck “
1

?
L

ÿ

n

cne
ikn (17)

cn “
1

?
L

ÿ

k

cke
´ikn (18)

c:
k “

1
?
L

ÿ

n

c:
ne

ikn (19)

c:
n “

1
?
L

ÿ

k

c:
ke

´ikn (20)

Then, the Hamiltonian becomes,

H “
ÿ

k

Ekc
:
kck (21)
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where,
Ek “ ´Jcospkq (22)

Particles can be added to the bands by adding a chemical potential in the Hamiltonian.

H “
J

2

ÿ

n

pc:
ncn`1 ` c:

n`1cnq ´ µ
ÿ

n

c:
ncn (23)

“ñ H “ J
ÿ

n

pSx
nS

x
n`1 ` Sy

nS
y
n`1q ´ µ

ÿ

n

ˆ

Sz
n `

1

2

˙

(24)

Here, the chemical potential µ acts like a magnetic field in the z direction.

3 Correlation Functions

3.1 Two-point Correlation Functions
Let us calculate the following quantity:

xGS|Sz
nS

z
m |GSy “ xGS| pc:

ncn ` 1{2qpc:
mcm ` 1{2q |GSy (25)

With no cross terms:

xGS| c:cn |GSy “
1

L

ÿ

k1,k2

xGS| c:
k1
ck2 |GSy eipk1´k2qn (26)

´

To get non-zero terms: ´
π

2
ă k1 “ k2 ă

π

2

¯

“
1

L

L{2
ÿ

k

“
1

2
(27)

“ñ xGS| c:
mcm |GSy “

1

2
(28)

Then cross terms:

xGS| c:
ncnc

:
mcm |GSy “

1

L2

ÿ

k1,k2,k3,k4

xGS| c:
k1
ck2c

:
k3
ck4 |GSy eip´k1n`k2n´k3m`k4mq (29)

ck4 |GSy Ñannihilates k4 if ´π
4

ă k4 ă π
4

c:
k3
ck4 |GSy Ñannihilates k4 if ´π

4
ă k4 ă π

4
and either creates that particle back (k3 “ k4) or

creates a new particle (k3 ‰ k4) if π
2

ă k3 ă 3π
2
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Wick Contraction:

•
k3 “ k4

k1 “ k2

Ñ

ˆ

L

2

˙2

“
1

4

•
k3 ‰ k4

k1 ‰ k2

k1 “ k4

k2 “ k3

xGS| c:
k1
ck2c

:
k3
ck4 |GSy “ xGS| ck2c

:
k3
c:
k1
ck4 |GSy (30)

Phases: eip´k1n`k1m`k2n´k2mq

ÿ

´π{2ăk1ăπ{2

“

ż π{2

´π{2

dk1
2π
L

∴ xGS|Sz
nS

z
m |GSy “

1

L2

ż π{2

´π{2

dk1
2π
L

ż 3π{2

π{2

dk2
2π
L

e´ipk1´k2qpn´mq (31)

“

ż π{2

´π{2

dk1
2π

e´ik1pn´mq

ż 3π{2

π{2

dk2
2π

e´ik2pn´mq (32)

“
1

4π2

ˆ

1

´ipn ´ mq
reik1pn´mqs

π{2
´π{2

˙ ˆ

1

ipn ´ mq
reik2pn´mqs

π{2
´π{2

˙

(33)

“
1

4π2pn ´ mq2

`

´
`

e´iπ
2

pn´mq ´ ei
π
2

pn´mq
˘˘

´

ei
3π
2

pn´mq ´ ei
π
2

pn´mq
¯

(34)

“
1

4π2pn ´ mq2
p´2iq sin

´π

2
pn ´ mq

¯

eiπpn´mqp2iq sin
´π

2
pn ´ mq

¯

(35)

“
1

π2pn ´ mq2
sin2

´π

2
pn ´ mq

¯

eiπpn´mq (36)

“ 0, if m ´ n “ even (37)

“ ´
1

π2pn ´ mq2
, if m ´ n “ odd (38)

In conclusion,
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• gapless system : ⟨
S⃗n ¨ S⃗m

⟩
„

1

|m ´ n|power

• gapped system: ⟨
S⃗n ¨ S⃗m

⟩
„ e´|m´n|{ξ

3.2 A "cute" result
ÿ

m

xGS|Sz
nS

z
m |GSy “ xGS|Sz

n

ÿ

m

Sz
m |GSy (39)

Here,
ř

m S
z
m “

ř

mpc:
mcm ´ 1{2q “

ř

m c
:
mcm ´ L{2 Then,

ÿ

m

xGS|Sz
nS

z
m |GSy “

1

4
´

2

π2

ˆ

1

12
`

1

32
`

1

52
` ...

˙

(40)

“ 0 (41)

8


