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Lecture 8: Topological Insulator Properties
25th May, 2023

Lecturer: Prof. Diptiman Sen Scribe: Phanindra Dewan

In this lecture, some special cases in the SSH model was discussed. After that, some properties
of topological insulators were introduced.

1 Some Variations in the SSH Model

ok _ ¢
—~ = - /’3‘ = —_
_r 1o~ .

7.016) Tlug) T8 7049

Considering the SSH model with the bond strengths given by :

9y = J(1+90)
for 9 > 0 (i.e., the last bond is weaker), there is a £ = 0 state, which is exponentially localised at

the end.
At around the &/ = 0, we can expand the state as:

) = pe'an + e 0]
And, writing the state is in the form:
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For ¢ — ei(k:rfEt)’

Eyp = [vko® + 60"y 5)
= +Vv2k2 + 62 (6)

1.1 Explanations for End Mode: 6 — 1
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In the case that ) — 1, the hopping amplitude between site 1 and 2 in the 1-d lattice tends to 0.
Hence, the Hamiltonian will start wth the terms:

H =2J(ches + chey)

This means that the energy © — +2.J. Also note that there is no term with c;, cJ{, thus no energy
is needed to add an electron to site 1.

1.2 Flipping the Sign of §

Recall that for an end mode, we required: |1 — | < |1 + ¢
—The question is, what happens if the § changes sign somewhere? The two possible configura-
tions (ground states) are given below:
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Then we can have a case where both of these configurations are there together.
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This is equivalent to the "mass" of the electron changing sign as we go along the lattice be-
cause the ¢ term is effectively the mass term of the Dirac Hamiltonian we are considering. Recall
equation (4) but now with ¢ replaced by m(z).
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The above shown configuration means that m(x) varies as shown below:
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Let us try the ansatz: ¢ = f(z)e *F! and suppose there is a state with £ = 0. Then we can



write:

. z 8 x- o
{—wa pr m(z)o | =0

{—z’v(% + im(:c)ay_ =0

= {—v% + m(x)ay: =0

Let v satisfy 0¥ = c1), where c is some constant.

1. o9% =1

2. 0% = —1

o= 3) =

Then with the other term in the Hamiltonian, we can write:
L [—vZ +m(z)]yv=0
= = (1) exp (fox dx’%xl))
2. [—Ua% —m(z)] =0
== Y = (_12) exp <— fox d:v'#)

The solution in (2) — 0 at both x — oo and x — —o0.
Thus, we have a solution and it is a localised state.
Note: With the Dirac equation, when mass changes sign, we get a localised £/ = 0 state.

2 Topological Insulator Properties

* Insulating in the bulk
* Conducting states at the boundaries

* Bulk-boundary correspondence: Wavefunctions of thr bulk states are characterised by a
topological invariant — number of boundary states
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3 3-D Topological Insulators

Examples: BisSes, BioTes.

In 3-D topological insulators, spin-orbit coupling plays an important role.

The H-atom spin-orbit coupling is due to the effective magnetic field experienced by a revolving
electron around the nucleus,

B=-xE
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Then the Zeeman coupling term is: — 22265 -B
Spin-orbit coupling is given by:

In materials like BisSes, BisTes, the Hs_o term is of the order of magnitude of the other terms
in the Hamiltonian - can also be the dominant term.

3.1 Spin-Orbit Locking

A 3-D topological insulator can be considered as below:
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The potential felt by an electron in this sytem can be plotted as below:
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Now, for spin-orbit coupling, we need an electric field. At the surface of these materials, we
can have an effective electric field even without applying an external electric field because there is
a high potential gradient at the surface.

We can write the force on the electron as: F = —%2 = qE
v

— E=— dq Z
Thus, the potential profile and the direction of electric field can be seen below:
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Now, the spin-orbit coupling part of the Hamiltonian can be written as:
Hs o=
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= v(04py — Oypz) = B = Fv4/p2 + p2 — relativistic type of dispersion but m = 0

v(oapy — Oyps)

Consider graphene. The two Dirac points at k£ and &k’ will have:
0 0 0
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So now, the spin & will always be at right angles to the momentum p. This is called spin-orbit
3.2 Disorders

Disorders in a condensed matter system can be:

* potential (spin-independent) disorder)
* spin-dependent disorder

For spin-independent disorders, the spin-orbit locking will prevent any sort of back scattering from
for spin-independent disorders.

these because for back-scattering, the spin will have to be completely flipped, which is not possible
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3.3 Semiconductor Heterostructures

Heterostructures are systems in which different materials are made to form an interface. An exam-
ple would be that of GaAs and Ga,_, Al As, where at the interface, there is a layer formed, which
is studied as a two-dimensional electron gas.
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The edge states in 2-D topological insulators are completely robust i.e., there is no chance of
back scattering. There is ballistic conductance.



