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In this lecture, some special cases in the SSH model was discussed. After that, some properties
of topological insulators were introduced.

1 Some Variations in the SSH Model

Considering the SSH model with the bond strengths given by :

δ1 = J(1− δ)

δ2 = J(1 + δ)

for δ > 0 (i.e., the last bond is weaker), there is a E = 0 state, which is exponentially localised at
the end.

At around the E = 0, we can expand the state as:

ψ = ψRe
iπx
2d + ψLe

−iπx
2d (1)

And, writing the state is in the form:

ψ =

(
ψR

ψL

)
=

(
α
β

)
(2)

We can write:

i
∂ψ

∂t
=

(
−iv ∂

∂x
0

0 iv ∂
∂x

)
ψ +

(
0 δ
δ 0

)
ψ (3)

Here,

E = vk → ψR

= −vk → ψL

=⇒ i
∂ψ

∂t
=

[
−iv ∂

∂x
σz + δσx

]
ψ (4)
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For ψ = ei(kx−Et),

Eψ = [vkσz + δσx]ψ (5)

= ±
√
v2k2 + δ2ψ (6)

1.1 Explanations for End Mode: δ → 1

In the case that δ → 1, the hopping amplitude between site 1 and 2 in the 1-d lattice tends to 0.
Hence, the Hamiltonian will start wth the terms:

H = 2J(c†2c3 + c†3c2)

This means that the energy E → ±2J . Also note that there is no term with c1, c
†
1, thus no energy

is needed to add an electron to site 1.

1.2 Flipping the Sign of δ
Recall that for an end mode, we required: |1− δ| < |1 + δ|
→The question is, what happens if the δ changes sign somewhere? The two possible configura-
tions (ground states) are given below:

Then we can have a case where both of these configurations are there together.
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This is equivalent to the "mass" of the electron changing sign as we go along the lattice be-
cause the δ term is effectively the mass term of the Dirac Hamiltonian we are considering. Recall
equation (4) but now with δ replaced by m(x).

i
∂ψ

∂t
=

[
−iv ∂

∂x
σz +m(x)σx

]
ψ (7)

The above shown configuration means that m(x) varies as shown below:

Let us try the ansatz: ψ = f(x)e−iEt and suppose there is a state with E = 0. Then we can
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write: [
−ivσz ∂

∂x
+m(x)σx

]
ψ = 0[

−iv ∂
∂x

+ im(x)σy

]
ψ = 0

=⇒
[
−v ∂

∂x
+m(x)σy

]
ψ = 0

Let ψ satisfy σyψ = cψ, where c is some constant.

1. σyψ = ψ

σy =

(
0 −i
i 0

)
=⇒ ψ =

(
1
i

)
f(x)

2. σyψ = −ψ

σy =

(
0 −i
i 0

)
=⇒ ψ =

(
1
−i

)
g(x)

Then with the other term in the Hamiltonian, we can write:

1.
[
−v ∂

∂x
+m(x)

]
ψ = 0

=⇒ ψ =

(
1
i

)
exp

(∫ x

0
dx′m(x′)

v

)
2.

[
−v ∂

∂x
−m(x)

]
ψ = 0

=⇒ ψ =

(
1
−i

)
exp

(
−
∫ x

0
dx′m(x′)

v

)
The solution in (2) → 0 at both x→ ∞ and x→ −∞.
Thus, we have a solution and it is a localised state.
Note: With the Dirac equation, when mass changes sign, we get a localised E = 0 state.

2 Topological Insulator Properties
• Insulating in the bulk

• Conducting states at the boundaries

• Bulk-boundary correspondence: Wavefunctions of thr bulk states are characterised by a
topological invariant → number of boundary states
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3 3-D Topological Insulators
Examples: Bi2Se3, Bi2Te3.
In 3-D topological insulators, spin-orbit coupling plays an important role.
The H-atom spin-orbit coupling is due to the effective magnetic field experienced by a revolving
electron around the nucleus,

B⃗ =
v⃗

c
× E⃗

Then the Zeeman coupling term is:− gq
2mc

S⃗ · B⃗
Spin-orbit coupling is given by:

HS−O = AS⃗ · (v⃗ × E⃗)

=
A

m
S⃗ · (p⃗× E⃗)

In materials like Bi2Se3, Bi2Te3, the HS−O term is of the order of magnitude of the other terms
in the Hamiltonian - can also be the dominant term.

3.1 Spin-Orbit Locking
A 3-D topological insulator can be considered as below:
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The potential felt by an electron in this sytem can be plotted as below:

Now, for spin-orbit coupling, we need an electric field. At the surface of these materials, we
can have an effective electric field even without applying an external electric field because there is
a high potential gradient at the surface.
We can write the force on the electron as: F⃗ = −dV

dz
ẑ = qE⃗

=⇒ E⃗ = −
dV
dz

q
ẑ

Thus, the potential profile and the direction of electric field can be seen below:
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Now, the spin-orbit coupling part of the Hamiltonian can be written as:

HS−O = S⃗ · (p⃗× E⃗)

Htop = σ⃗ · (p⃗× ẑ)

= v(σxpy − σypx) → E = ±v
√
p2x + p2y → relativistic type of dispersion but m = 0

Hbot = −v(σxpy − σypx)

Consider graphene. The two Dirac points at k and k′ will have:

iℏ
∂ψ

∂t
= ℏv

(
σx

(
−i ∂
∂x

)
+ σy

(
−i ∂
∂y

))
(8)

So now, the spin σ⃗ will always be at right angles to the momentum p⃗. This is called spin-orbit
locking.

3.2 Disorders
Disorders in a condensed matter system can be:

• potential (spin-independent) disorder)

• spin-dependent disorder

For spin-independent disorders, the spin-orbit locking will prevent any sort of back scattering from
these because for back-scattering, the spin will have to be completely flipped, which is not possible
for spin-independent disorders.
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3.3 Semiconductor Heterostructures
Heterostructures are systems in which different materials are made to form an interface. An exam-
ple would be that of GaAs and Ga1−xAlxAs, where at the interface, there is a layer formed, which
is studied as a two-dimensional electron gas.
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The edge states in 2-D topological insulators are completely robust i.e., there is no chance of
back scattering. There is ballistic conductance.

σ =
e2

h
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