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This lecture dealt with electronic transport in mesoscopic systems, in particular dealing with
Landauer conductance.

1 Very Small Systems
Roughly speaking, we can have a few regimes depending on the size of the system we are talking
about.

microscopic ∼ 1 Å - 100Å

mesoscopic ∼ 100 Å - 100 µm

macroscopic ∼ 1 m

In this lecture, we will be talking about mesoscopic systems, in particular very small wires and
will check their conductance.
Consider a classical wire (which just means a macroscopic wire):

If the resistivity of the material is ρ, then the resistance of a wire is R = ρL
A

, where L is the

length of the wire and A is the cross-section of the wire. The current flowing through it when a
potential difference V is applied across its ends is I = V

R
. Alternate to its resistance, we can define

its conductance as G = 1
R
= I

V
= A

ρL
.→The question we should ask next is whether all the above

relations hold for a system which is really small.
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2 Landauer Conductance
To start off with the discussion of conductance for very small systems, let us consider a simple
model system. The system is a one-dimensional wire with particular chemical potentials on its two
ends, µL on the left and µR on the right. Consider the temperature on the two ends to be same, i.e.,
TL = TR.

At the leads, we can write the Hamiltonian as:

HLL =
p⃗2x
2m

− µL (1)

for the left lead; and

HRR =
p⃗2x
2m

− µR (2)

for the right lead.

The group velocity is defined as:

vgroup =
dϵ

dp
(3)

The net current I will be 0 if µL = µR, which is not too interesting.
Now, if we have µR is slightly less than µL, then things get slightly more interesting.
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The current is defined as:

I =
q

L

∫ µL

µR

dϵρ(ϵ)v(ϵ) (here ρ is density of states and not resistivity) (4)

In general, for Ep having some dependance on p, we can the density of states as:

ρ(E) =

∫
dp

2πℏ/L
δ(E − Ep)

=
L

2πℏ
1

(dEp

dp

)
Ep=E

=⇒ ρ(E) =
L

2πℏ
1

vgroup(Ep)
(5)

Thus, we get

∴ I =
q

L

∫ µL

µR

dϵ
L

2πℏ
=

q

2πℏ
(µL − µR

=
q2

2πℏ
(VL − VR)

=
q2

h
(VL − VR)

=⇒ G =
I

VL − VR

=
q2

h

∴ G =
q2

h
(6)
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For electrons, we have 2 possibles spins, and we get

G0 =
2e2

h

with
h

2e2
= 12.9kΩ

Here, we should note that the result we have obtained is kind of weird if we just consider the
system with a clear thought. We considered a "clean" wire in which the electrons move ballistically.
We should expect all electrons to go straight through.
But our result shows that the wire has some resistance. The question is from where are we getting
this resistance?
→This resistance is actually coming from the dissipation of energy near the boundary of the wire
and the leads - also called contact resistance.

Till now we considered that there is no actual potential. But the case with V (x) ̸= 0 is also not
so complicated.

Knowing that for a given V (x), we have reflected and transmitted amplitudes r and t, we can
write the transmittance as T = |t|2.
In such a case, the Landauer conductance just changes to

G =
2e2

h
T (7)
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3 Wire with Thickness
We did the analysis for a 1-D wire till now. Now consider a wire with a certain thickness. The
Hamiltonian can be written as:

H =
p⃗2x
2m

+ V (y, z) (8)

Considering the side gate voltage to be strong enough, we can approximately write the energy
levels of the electrons in the wire as:

E(p, n) =
p2

2m
+

n2π2ℏ2

2mW 2
(9)

The second term in the right hand side only displaces the energy spectrum along the y-axis in
the E vs. p plot.

5



For the energy spectrum shown above, we get conductance as

G =
2e2

h
3

As negative V is increased, W decreases.

For different sub-bands with different transmission coefficients:

G =
2e2

ℏ
∑
n

Tn(E) (10)

The mesoscopic nature i.e., ballistic motion of electrons is granted when mean free path of
electrons >> length of wire.

In all this, Buttiker’s contribution was the generalised
measurement of current/voltage: four-probe measurement.
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