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This lecture started off with a discussion about the multi-electron systems (tight-binding) and
then moved on to the Su-Schrieffer-Heeger model.

1 Multi-Electron Systems
In Lecture 2, we solved the tight-binding Hamiltonian given by:

H =
∞∑
n=1

E0c
†
ncn −

∞∑
n=1

γ(c†ncn+1 + c†n+1cn+1) (1)

Now, using the new creation and annihilation operators we defined last lecture, the Hamiltonian
becomes:

H =
∑
p

c†pcp (2)

This Hamiltonian is of the very familiar harmonic oscillator form. Actually, what we did by chang-
ing the operators by taking a Fourier transform is called diagonalization of the Hamiltonian; and
this particular scheme worked because of the translational invariance of the Hamiltonian.
→What is the ground state of the system? (A difficult question, for now.)

First off, let us consider a single mode defined by the operators: c1 and c†1. Then we can have
two states:

|vac⟩

c†1 |vac⟩ = |1⟩

Also,

c†1c1 |vac⟩ = 0

c†1c1 |1⟩ = |1⟩

Correspondingly, for two modes given by: c1, c
†
1, c2, c†2, we get 4 states and it can be easily worked

out.
∴ For N fermion modes, number of states = 2N

1



Going back to the case of single mode, the Hamiltonian becomes: H = E1c
†
1c1. And its action

on the two states is given below:

H |vac⟩ = 0 (3)
H |1⟩ = E1 |1⟩ (4)

→What is the ground state of the system?
It depends on the sign of E1.

In general, remembering the plot of Ep vs. p from Lecture 2, we can say that the ground state
of the system is the one in which all the negative energy states are occupied and the rest are unoc-
cupied.

→How can we control the filling of states?
Experimentally: Use a battery or some voltage source!
Theoretically: Change the parameter E0 in the Hamiltonian, which is actually the Fermi energy.

The fact that E0 is the Fermi energy can be more clearly seen in the following way. Look at
the Hamiltonian:

H =
∞∑
n=1

E0c
†
ncn −

∞∑
n=1

γ(c†ncn+1 + c†n+1cn+1) (5)

Now we know
∑

n c
†
ncn = N , is the number operator. So, the grnd partition function for such a

system will be written as:
Q =

∑
e−βH =

∑
s

eβ(Es−µNs) (6)

From the above comparison, it clear that E0 is the Fermi energy.

2 Su-Schrieffer-Heeger (SSH) Model
Till now the tight-binding Hamiltonian was being studied. Now let us think of a system which
has different values of the hopping amplitude at different sites. It is important to note that such a
thought is not purely theoretical and there are systems such as polyacetylene which has two values
of the hopping amplitude which alternates between sites.
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The Hamiltonian for such a system1 will be:

H = −µ
∞∑
n=1

c†ncn −
∞∑
n=1

γn(c
†
ncn+1 + c†n+1cn+1) (7)

→How to find energy levels?
It is important to understand that since we have broken translational symmetry under a translation
by 1 site, we must think of a way to get it back. We will consider unit cells of two lattice points
such that translational symmetry is present under translation by 2 lattice sites.

Previously, we solved: H |n⟩ = −γ(|n+ 1⟩+ |n− 1⟩)− µ |n⟩

Next, we define states:
|aj⟩ → 1 electron state with electron at site a of jth unit cell
|bj⟩ → 1 electron state with electron at site b of jth unit cell
Acting with H ,

H |aj⟩ = −µ |aj⟩ − γ1 |bj⟩ − γ2 |bj−1⟩
1Any such 1-D system will dimerise due to Peierls instability. Dimerisation means the shortening of one bond and

lengthening of another due to unequal hopping amplitude (strength of bond). Check ’Surprises in Theoretical Physics’.
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H |bj⟩ = −µ |bj⟩ − γ1 |aj⟩ − γ2 |aj+1⟩
Note that we have 2 equations as we have two states in the unit cell.

Next, just like in tight-binding, we can try the eigenstate given below:

|p⟩ =
N/2∑
j=1

[
e

ipj2a
ℏ α |aj⟩+ e

ipj2a
ℏ β |bj⟩

]
Here, e

ip2aN
2ℏ = 1 =⇒ paN

ℏ = 2π =⇒ p = 2πℏ
Na

times an integer
The range of p: −πℏ

2a
to πℏ

2a
(no. of p values = N/2)

So,

H |p⟩ = −µ |p⟩+
N/2∑
j=1

e
ipj2a

ℏ [−γ1 |bj⟩ − γ2 |bj−1⟩ − γ1 |aj⟩ − γ2 |aj+1⟩]

= −µ |p⟩+
N/2∑
j=1

e
ipj2a

ℏ

[
−γ1 |bj⟩ − γ2e

ip2a
ℏ |bj⟩ − γ1 |aj⟩ − γ2e

−ip2a
ℏ |aj⟩

]

= −µ |p⟩+
N/2∑
j=1

e
ipj2a

ℏ

[
−γ1 |aj⟩ − γ1 |bj⟩ − γ2e

−ip2a
ℏ |aj⟩ − γ2e

ip2a
ℏ |bj⟩

]
Also,

H |p⟩ = Ep |p⟩ = Ep

∑
j

[
e

ipj2a
ℏ α |aj⟩+ e

ipj2a
ℏ β |bj⟩

]
Comparing, we get:

Epαe
ipj2a

ℏ = −µe
ipj2a

ℏ − γ1βe
ipj2a

ℏ − γ2βe
ip(j−1)2a

ℏ (8)

Epβe
ipj2a

ℏ = −µe
ipj2a

ℏ − γ1αe
ipj2a

ℏ − γ2αe
ip(j+1)2a

ℏ (9)

=⇒ −µα− γ1β − γ2βe
−ip2a

ℏ = Epα

µβ − γ1α− γ2αe
ip2a
ℏ = Epβ

=⇒

(
−µ −γ1 − γ2e

−ip2a
ℏ

−γ1 − γ2e
ip2a
ℏ −µ

)(
α
β

)
= Ep

(
α
β

)
(10)

Solving this eigenvalue equation will give us the energy, Ep(p)
2

2However, it is important to note that these are energies of "bulk states". This particular system also allows "edge"
or "end" states. These will come later.
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