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In this lecture, the tight-binding hamiltonian for a periodic 1-D lattice was solved.

1 Tight-Binding Model for Periodic 1-D Lattice
Consider the Hamiltonian:

H =
∞∑
n=1

E0c
†
ncn −

∞∑
n=1

γ(c†ncn+1 + c†n+1cn+1) (1)

The most pertinent question we need to answer is: what are the eigenstates and eigenvalues of this
Hamiltonian? It is better understood as follows: The number states |n⟩ for a given pair of creation
and annihilation operators will be used to construct the eigenstates as the Hamiltonian is itself a
sum of various c†n’s and cn’s.
Also, we will use periodic boundary conditions i.e., cN+1 = c1. Now let us see what happens when
the Hamiltonian H acts on a state |n⟩.
From the anticommutator relation of cm and c†n, we get;

cmc
†
n = −c†ncm + δmn (2)

Thus we get:

cm |n⟩ = cmc
†
n |vac⟩ (3)

= (−c†ncm + δmn) |vac⟩ (4)
= δmn |vac⟩ (5)

The different parts of the Hamiltonian act as follows:

−γ
∑
m

(c†mcm+1 + c†m+1cm) |n⟩ = −− γ
∑
m

(c†mδm+ 1,m+ c†m+1δm, n) |vac⟩ (6)

= −γ(c†n−1 + c†n+1) |vac⟩ (7)
= γ(|n+ 1⟩+ |n− 1⟩ (8)

E0

∑
m

c†mcm |n⟩ = E0

∑
m

c†mδm,n |vac⟩ (9)

= E0 |n⟩ (10)

Therefore,
H |n⟩ = −γ(|n+ 1⟩ |n− 1⟩) + E0 |n⟩ (11)
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2 Eigenstates and Eigenvalues
Next, we are going to use translational invariance of the system to look for plane wave eigenstates
of the Hamiltonian. This just means that if the Hamiltonian is invariant under n → n+ 1 then the
eigenstates can be expected to be of the form of plane waves. Thus, try:

|p⟩ =
N∑

n=1

e
ipna
ℏ |n⟩ (12)

Then,

H |p⟩ =
N∑

n=1

e
ipna
ℏ H |n⟩ (13)

=
N∑

n=1

e
ipna
ℏ (γ |n+ 1⟩ γ |n− 1⟩+ E0 |n⟩) (14)

=
∑
n

(
e

ip(n−1)a
ℏ (−γ) |n⟩+ e

ip(n+1)a
ℏ (−γ) |n⟩+ e

ipna
ℏ E0 |n⟩

)
(15)

=
∑
n

e
ipna
ℏ |n⟩

[
−γe

−ipa
ℏ − γe

ipa
ℏ + E0

]
(16)

=
∑
n

e
ipna
ℏ |n⟩

[
E0 − 2γcos

(pa
ℏ

)]
(17)

= |p⟩
[
E0 − 2γcos

(pa
ℏ

)]
(18)

∴ H |p⟩ =
[
E0 − 2γcos

(pa
ℏ

)]
|p⟩ (19)

= Ep |p⟩ (20)

=⇒ |p⟩ is an eigenstate of H with an eigenvalue : Ep = E0 − 2γcos
(
pa
ℏ

)
.
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But now, we must think of how many values of p are allowed?

|p⟩ =
∑
n

e
ipna
ℏ |n⟩

The coefficients of n = N + 1 and n = 1 are the same.

=⇒ e
ipa(N+1

ℏ = e
ipa
ℏ =⇒ e

ipNa
ℏ ] = 1

Therefore, p is quantized in units of 2πℏ
aN

.
p = 2πℏ

aN
times some integer.

(Always the case that no. of modes in real space = no. of modes in Fourier space!)

3 (Anti!)commutators in Fourier Space
In the last section we did something funny with how we defined the eigenstate of the Hamiltonian
given by Eq (1). We took a sum of plane wave solutions over all the allowed values of n. Something
like this is done very frequently when we deal with Fourier series. So we should be able to get
the solution we obtained above by taking a Fourier series of something. That something will be
the creation and annihilation operators we defined in Lecture 1. What we will do is convert the
creation and annihilation operators from the number space to Fourier space i.e., k-space1 via a
discrete Fourier transform.
The Fourier transforms will be deifned as follows:

cp =
1√
N

∑
n

e
−ipna

ℏ cn (21)

cn =
1√
N

∑
n

e
ipna
ℏ cp (22)

c†p =
1√
N

∑
n

e
ipna
ℏ c†n (23)

c†n =
1√
N

∑
n

e
−ipna

ℏ c†p (24)

We know the anticommutator relations in number space from Lecture 1:

{c†m, c†n} = 0 (25)
{cm, cn} = 0 (26)

{cm, c†n} = δmn (27)

1Here it is p-space but k and p are related.
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We can show that in p-space, the anticommutator relations are:

{c†p, c
†
p′} = 0 (28)

{cp, cp′} = 0 (29)

{cp, c†p′} = δpp′ (30)

Let’s see what these new operators do. Consider a vacuum state |vac⟩. Act the new operators
on this state. We get:

cp |vac⟩ = 0 (31)

c†p |vac⟩ = |p⟩ (32)

c†p1c
†
p2
|vac⟩ = |p1, p2⟩ (33)

c†p2c
†
p1
|vac⟩ = |p2, p1⟩ = − |p1, p2⟩ (34)
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